Checklist of minimum criteria for in vivo-in vitro comparison

Criteria	Supplementary information
A minimum number (8 - 12) of well	The sources and characteristics of the soils should be well
characterized soils is used.	documented.
A range of contaminant	Include different contaminant sources (mining, agriculture,
concentrations and bioavailabilities	landfill etc.) and soil types per method per contaminant to obtain
is considered.	a good range of concentrations and bioavailabilities. Discussion of
	this point is further elaborated in Juhasz et al. (2013) ¹ .
$R^2 > 0.64$ (r > 0. 8), or a statistically	A compilation of some of the <i>in vitro-in vivo</i> comparison studies
significant correlation is obtained.	from the peer reviewed literature can be found in Koch and
	Reimer (2010) ² . Testing of a regression using samples that were
	not used to construct the model should be considered, as
	detailed in Juhasz et al (2013) ¹ .
A slope value of 0.8 to 1.2 is	Other slope values should be justified.
obtained.	
The incorporation of the spike	Examples of the calculation of relative bioaccessibility can be
recovery to obtain relative	found in Juhasz et al (2009), Oomen et al (2006), and Caboche
bioaccessibility is considered and	(2009) ³ . Relative bioaccessibility tends to be most relevant for
the approach used to do this is	elements that are recovered significantly <100% in spike or
justified.	control tests (e.g., Pb in the intestinal phase).

_

¹ Juhasz, A. L.; Basta N.T.; Smith, E. 2013. Environmental Pollution 180, 372-375.

² Koch, I., Reimer, K.J. "Bioaccessibility Extractions for Contaminant Risk Assessment." In Comprehensive Sampling and Sample Preparation Volume 3; Pawliszyn, J.; Le, X. C.; Li, X-F.; Lee, H. K.; Eds; Elsevier, Academic Press: Oxford, UK, pp 487–507, 2012.

³ Juhasz, A. L.; Weber, J.; Smith, E.; Naidu, R.; Marschner, B.; Rees, M.; Rofe, A.; Kuchel, T.; Sansom, L. 2009. Environ. Sci. Technol. 43, 4503-4509; Oomen, A. G., Brandon, E. F. A., Swartjes, F. A., Sips, A. J. A. M., How can information on oral bioavailability improve human health risk assessment for lead-contaminated soils?; RIVM: Bilthoven, Netherlands, 2006; 711701042/2006, 1-108; Caboche J 2009. Validation d"un test de mesure de bioaccessibilité – Application à 4 éléments traces métalliques dans les sols : As, Cd, Pb et Sb. Ph.D Thesis, Institut national polytechnique de Lorraine, Nancy, France.